Neuronal nitric oxide modulates morphine antinociceptive tolerance by enhancing constitutive activity of the mu-opioid receptor
by
Heinzen EL, Booth RG, Pollack GM.
Division of Drug Delivery and Disposition,
School of Pharmacy,
University of North Carolina,
Chapel Hill, NC 27599-7360, USA.
Biochem Pharmacol. 2005 Feb 15;69(4):679-88.


ABSTRACT

NO is a key mediator of morphine antinociceptive tolerance. This work was conducted to evaluate the specific effects of NO on mu-opioid receptor activity. To investigate the effects of morphine- and L-arginine (the NO precursor)-induced increases in NO, five groups of rats were treated with saline, l-arginine (100-, 300-, or 500-mg/kg/h), or morphine 3-mg/kg/h for 8h on Day 1; brain tissue was collected on Day 2. To evaluate the effects of additional increases in NO on morphine-induced alterations of the mu-opioid receptor, six groups of rats were treated with 8-h intravenous infusions for two consecutive days as per the following scheme (Day 1:Day 2): saline:saline (control); saline:morphine 3-mg/kg/h (tolerant); L-arginine 500-mg/kg/h:saline (NO control); L-arginine 100-mg/kg/h:morphine 3-mg/kg/h; L-arginine 300-mg/kg/h:morphine 3-mg/kg/h; and L-arginine 500-mg/kg/h:morphine 3-mg/kg/h (supertolerant). Brain tissue was collected at the end of Day 2. The time course of effects on morphine-induced receptor alterations due to increased NO also was evaluated. Brain tissue was analyzed for changes in radioligand (agonist and antagonist) binding and [(35)S]GTPgammaS binding (agonist and antagonist). In the absence of agonist exposure, NO produced an alteration in the mu-opioid receptor that increased receptor activity. In the presence of agonist, NO increased constitutive activation of the mu-opioid receptor and reduced the ability of a selective mu-opioid agonist to activate the mu-opioid G-protein-coupled receptor; these molecular effects occurred in a time course consistent with the development of antinociceptive tolerance. This work establishes important NO-induced alterations in mu-opioid receptor functionality, which directly lead to the development of opioid antinociceptive tolerance.
NO
Morphine
Tolerance
Dependence
High dose morphine
Endogenous morphine?
Morphine and serotonin
Morphine: 200 anniversary
Opioids, mood and cognition
Is morphine an antidepressant?
Morphine-induced changes of gene expression
Morphine as a neurotransmitter/neuromodulator
Do rewarding drugs trigger endogenous morphine release?



Refs
and further reading

HOME
HedWeb
Nootropics
Cocaine.org
Future Opioids
BLTC Research
MDMA/Ecstasy
Superhapiness?
Utopian Surgery?
The Abolitionist Project
The Hedonistic Imperative
The Reproductive Revolution
Critique of Huxley's Brave New World

The Good Drug Guide
The Good Drug Guide

The Responsible Parent's Guide
To Healthy Mood Boosters For All The Family