Modulation of neurotransmitter release in the
basal ganglia of the rat brain by dynorphin peptides

You ZB, Herrera-Marschitz M, Terenius L
Department of Physiology and Pharmacology,
Karolinska Institutet,
Stockholm, Sweden.
J Pharmacol Exp Ther 1999 Sep; 290(3):1307-15


Microinjection studies have found that although dynorphin peptides decrease dopamine release in the rat basal ganglia, the nonselective opiate antagonist naloxone produces the opposite effect. To investigate the contribution of the dynorphin pathways to a tonic modulation of dopamine release, a microdialysis study was undertaken, with probes implanted in the substantia nigra and the ipsilateral neostriatum. Perfusion of the substantia nigra with the nonselective antagonist naltrexone (NTX; 1-10 microM), the selective kappa-opioid receptor antagonist, nor-binaltorphimine (nor-BNI; 1-10 microM), and the selective mu-opioid receptor antagonist, D-Pen-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH(2) (CTOP; 1-10 microM) produced an increase in dopamine release, both in substantia nigra and neostriatum. nor-BNI also produced an increase in dynorphin B release, and a similar effect was observed with the higher concentration of NTX (10 microM). At the higher concentration of NTX and CTOP, an increase in glutamate release was also observed. Perfusion of the neostriatum with NTX, nor-BNI, or CTOP increased striatal dopamine, and dynorphin B release and increased dynorphin B in the ipsilateral substantia nigra. NTX and CTOP, but not nor-BNI, increased striatal glutamate and aspartate release. The kappa-opioid agonist U-50,488H (10 microM) induced a decrease in dopamine levels, both in the substantia nigra and neostriatum, and a paradoxical increase in striatal aspartate levels. Finally, systemic administration of NTX (4 mg/kg s.c.) in awake animals significantly increased striatal dopamine levels. The results suggest that opioid peptides, either dynorphins acting on kappa-opioid receptors or enkephalins acting on mu-opioid receptors, exert tonic inhibition on dopamine and dynorphin B release in both substantia nigra and neostriatum.
Fentanyl and ketamine
Dynorphin and depression
Dynorphin, dopamine and CART
Dynorphin A and pain promotion
Kappa receptors, dopamine d3, and cocaine
Dynorphin: Nature's own antidote to cocaine?
Dynorphin antagonists as future antidepressants?
Pro-pain actions of dynorphin via bradykinin receptors

and further reading

Future Opioids
BLTC Research
Utopian Surgery?
The Abolitionist Project
The Hedonistic Imperative
The Reproductive Revolution
Critique of Huxley's Brave New World

The Good Drug Guide
The Good Drug Guide

The Responsible Parent's Guide
To Healthy Mood Boosters For All The Family